《烙饼问题》教学反思
作为一位到岗不久的教师,我们的任务之一就是课堂教学,借助教学反思我们可以拓展自己的教学方式,那么你有了解过教学反思吗?以下是小编为大家整理的《烙饼问题》教学反思,仅供参考,希望能够帮助到大家。
《烙饼问题》教学反思11、创造多种形式,突破重、难点。为了突破难点,很短的时间让学生了解烙一张、两张饼至少需要的时间,为探究三张饼的最佳烙法作好铺垫。在探究三张饼的最佳烙法时,学生首先想到的是要12分钟,我就问:“还有更省时的方案吗?”激发学生的求知欲,迫使他们重新思考和操作。于是出现了两种方法:第一种先烙烙两张,再烙一张,学生提出异议,并让他进行板演,出现我们预设的第二种方法:三张轮换烙。并通过多媒体课件直观展示两种轮换烙的过程,直观比较出第一种要烙4次,而第二种只需烙三次,节省3分钟,又通过表格的填写加深三张轮换烙的方法。为什么第二种三张轮换烙方法会比第一种方法节省3分钟呢,通过再现直观图,学生得出:保证每次锅子里总有两张饼呀。并培养空间想象能力,从而达到突破难点的目的。为了突出“如何用优化思想解决生活中的问题”这一教学重点,我是这样做的:首先,在探究烙两张饼至少需要几分钟时,有的学生说要12分钟,有的学生说6分钟,从而引发分歧,激起学生争辩及思维的碰撞。再通过各自陈述理由后对比发现:锅子里同时烙两张饼更省时省资源,让学生初步感受到从多种方案中寻找最优方案的重要性。其次,在探究三张饼至少需要几分钟的时候,有的学 ……此处隐藏12311个字……>
1.重视学生动手操作,在操作中发现规律。在教学中让学生利用准备的圆片进行动手操作,通过操作学生会出现如下几种情况:
(1)每次烙完一张饼,6+6+6=18(分钟)
(2)第一次烙1号和2号饼的正面,第二次烙1号和2号饼的反面,第三次烙3号饼的正面,第四次烙3号饼的反面,3+3+3+3=12(分钟)
(3)第一次烙1号和2号饼的正面,第二次烙1号的反面和3号饼的`正面,第三次烙2号和3号饼的反面,3+3+3=9(分钟)
然后教师让学生进行观察,哪种方法可以尽快吃上饼呢,为什么?小组进行交流和讨论,最后达成共识:每次总烙2张饼,别让锅空闲,这样应该最省时间。
在此基础上,教师进一步提出问题:如果要烙4张饼、5张饼、6张饼……呢?你发现了什么?由此得出:饼的张数×每面烙的时间=所需最少时间。
2.延伸拓展,启迪思维。在学生发现烙饼的规律后,教师提出当每次最多能烙3张饼,这个规律是否依然适用呢?你又会发现什么呢?学生经过思考发现只要把饼的张数×每面烙的时间=所需最少时间转化为总面数÷每次可烙的面数×每面烙的时间=所需最少时间就可以得出答案。在这个过程中“总面数÷每次可烙的面数”实际上就等于饼的张数。
不足之处:
由于对烙饼问题进行了拓展,导致练习时间不充分,学生对于烙饼问题的规律掌握不够熟练,出现了应用规律解决问题时学生对于每面烙的时间理解不到位,把每面烙的时间和烙一张饼所用的时间混淆,没有注意到必须用饼的张数乘每面烙的时间。
再教设计:
对于烙饼问题的拓展可以留给学生课后进行思考,应该留有更多的时间对本节课的问题进行针对性的训练,不留知识上的盲点。